博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
x265-1.7版本-encoder/encoder.cpp注释
阅读量:2189 次
发布时间:2019-05-02

本文共 84940 字,大约阅读时间需要 283 分钟。

注:问号以及未注释部分 会在x265-1.8版本内更新

/***************************************************************************** * Copyright (C) 2013 x265 project * * Authors: Steve Borho 
* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111, USA. * * This program is also available under a commercial proprietary license. * For more information, contact us at license @ x265.com. *****************************************************************************/#include "common.h"#include "primitives.h"#include "threadpool.h"#include "param.h"#include "frame.h"#include "framedata.h"#include "picyuv.h"#include "bitcost.h"#include "encoder.h"#include "slicetype.h"#include "frameencoder.h"#include "ratecontrol.h"#include "dpb.h"#include "nal.h"#include "x265.h"namespace x265 {const char g_sliceTypeToChar[] = {'B', 'P', 'I'};}static const char* summaryCSVHeader = "Command, Date/Time, Elapsed Time, FPS, Bitrate, " "Y PSNR, U PSNR, V PSNR, Global PSNR, SSIM, SSIM (dB), " "I count, I ave-QP, I kpbs, I-PSNR Y, I-PSNR U, I-PSNR V, I-SSIM (dB), " "P count, P ave-QP, P kpbs, P-PSNR Y, P-PSNR U, P-PSNR V, P-SSIM (dB), " "B count, B ave-QP, B kpbs, B-PSNR Y, B-PSNR U, B-PSNR V, B-SSIM (dB), " "Version\n";static const char* defaultAnalysisFileName = "x265_analysis.dat";using namespace x265;Encoder::Encoder(){ m_aborted = false; m_reconfigured = false; m_encodedFrameNum = 0; m_pocLast = -1; m_curEncoder = 0; m_numLumaWPFrames = 0; m_numChromaWPFrames = 0; m_numLumaWPBiFrames = 0; m_numChromaWPBiFrames = 0; m_lookahead = NULL; m_rateControl = NULL; m_dpb = NULL; m_exportedPic = NULL; m_numDelayedPic = 0; m_outputCount = 0; m_csvfpt = NULL; m_param = NULL; m_latestParam = NULL; m_cuOffsetY = NULL; m_cuOffsetC = NULL; m_buOffsetY = NULL; m_buOffsetC = NULL; m_threadPool = NULL; m_analysisFile = NULL; for (int i = 0; i < X265_MAX_FRAME_THREADS; i++) m_frameEncoder[i] = NULL; MotionEstimate::initScales();}void Encoder::create(){ if (!primitives.pu[0].sad) { // this should be an impossible condition when using our public API, and indicates a serious bug. x265_log(m_param, X265_LOG_ERROR, "Primitives must be initialized before encoder is created\n"); abort(); } x265_param* p = m_param; int rows = (p->sourceHeight + p->maxCUSize - 1) >> g_log2Size[p->maxCUSize]; int cols = (p->sourceWidth + p->maxCUSize - 1) >> g_log2Size[p->maxCUSize]; // Do not allow WPP if only one row or fewer than 3 columns, it is pointless and unstable if (rows == 1 || cols < 3) p->bEnableWavefront = 0; bool allowPools = !p->numaPools || strcmp(p->numaPools, "none"); // Trim the thread pool if --wpp, --pme, and --pmode are disabled if (!p->bEnableWavefront && !p->bDistributeModeAnalysis && !p->bDistributeMotionEstimation && !p->lookaheadSlices) allowPools = false; if (!p->frameNumThreads) { // auto-detect frame threads int cpuCount = ThreadPool::getCpuCount(); if (!p->bEnableWavefront) p->frameNumThreads = X265_MIN3(cpuCount, (rows + 1) / 2, X265_MAX_FRAME_THREADS); else if (cpuCount >= 32) p->frameNumThreads = (p->sourceHeight > 2000) ? 8 : 6; // dual-socket 10-core IvyBridge or higher else if (cpuCount >= 16) p->frameNumThreads = 5; // 8 HT cores, or dual socket else if (cpuCount >= 8) p->frameNumThreads = 3; // 4 HT cores else if (cpuCount >= 4) p->frameNumThreads = 2; // Dual or Quad core else p->frameNumThreads = 1; } m_numPools = 0; if (allowPools) m_threadPool = ThreadPool::allocThreadPools(p, m_numPools); if (!m_numPools) { // issue warnings if any of these features were requested if (p->bEnableWavefront) x265_log(p, X265_LOG_WARNING, "No thread pool allocated, --wpp disabled\n"); if (p->bDistributeMotionEstimation) x265_log(p, X265_LOG_WARNING, "No thread pool allocated, --pme disabled\n"); if (p->bDistributeModeAnalysis) x265_log(p, X265_LOG_WARNING, "No thread pool allocated, --pmode disabled\n"); if (p->lookaheadSlices) x265_log(p, X265_LOG_WARNING, "No thread pool allocated, --lookahead-slices disabled\n"); // disable all pool features if the thread pool is disabled or unusable. p->bEnableWavefront = p->bDistributeModeAnalysis = p->bDistributeMotionEstimation = p->lookaheadSlices = 0; } char buf[128]; int len = 0; if (p->bEnableWavefront) len += sprintf(buf + len, "wpp(%d rows)", rows); if (p->bDistributeModeAnalysis) len += sprintf(buf + len, "%spmode", len ? "+" : ""); if (p->bDistributeMotionEstimation) len += sprintf(buf + len, "%spme ", len ? "+" : ""); if (!len) strcpy(buf, "none"); x265_log(p, X265_LOG_INFO, "frame threads / pool features : %d / %s\n", p->frameNumThreads, buf); for (int i = 0; i < m_param->frameNumThreads; i++) { m_frameEncoder[i] = new FrameEncoder; m_frameEncoder[i]->m_nalList.m_annexB = !!m_param->bAnnexB; } if (m_numPools) { for (int i = 0; i < m_param->frameNumThreads; i++) { int pool = i % m_numPools; m_frameEncoder[i]->m_pool = &m_threadPool[pool]; m_frameEncoder[i]->m_jpId = m_threadPool[pool].m_numProviders++; m_threadPool[pool].m_jpTable[m_frameEncoder[i]->m_jpId] = m_frameEncoder[i]; } for (int i = 0; i < m_numPools; i++) m_threadPool[i].start(); } else { /* CU stats and noise-reduction buffers are indexed by jpId, so it cannot be left as -1 */ for (int i = 0; i < m_param->frameNumThreads; i++) m_frameEncoder[i]->m_jpId = 0; } if (!m_scalingList.init()) // 初始化量化中所需要的几个表格 { x265_log(m_param, X265_LOG_ERROR, "Unable to allocate scaling list arrays\n"); m_aborted = true; } else if (!m_param->scalingLists || !strcmp(m_param->scalingLists, "off")) // 如果scalingLists为0或者是off,则不使用量化矩阵表,只进行均匀量化 m_scalingList.m_bEnabled = false; else if (!strcmp(m_param->scalingLists, "default")) // 如果scalingLists为default,则使用HEVC中默认的量化矩阵进行量化 m_scalingList.setDefaultScalingList(); else if (m_scalingList.parseScalingList(m_param->scalingLists)) // 否则从指定的文件中读取量化矩阵 m_aborted = true; m_scalingList.setupQuantMatrices(); // 根据上面的配制和选项,设置量化矩阵表 m_lookahead = new Lookahead(m_param, m_threadPool);//初始化lookachead用于帧类型决策 if (m_numPools) { m_lookahead->m_jpId = m_threadPool[0].m_numProviders++; m_threadPool[0].m_jpTable[m_lookahead->m_jpId] = m_lookahead; } m_dpb = new DPB(m_param); m_rateControl = new RateControl(*m_param); initVPS(&m_vps); initSPS(&m_sps); initPPS(&m_pps); /* Try to open CSV file handle */ if (m_param->csvfn) { m_csvfpt = fopen(m_param->csvfn, "r"); if (m_csvfpt) { /* file already exists, re-open for append */ fclose(m_csvfpt); m_csvfpt = fopen(m_param->csvfn, "ab"); } else { /* new CSV file, write header */ m_csvfpt = fopen(m_param->csvfn, "wb"); if (m_csvfpt) { if (m_param->logLevel >= X265_LOG_FRAME) { fprintf(m_csvfpt, "Encode Order, Type, POC, QP, Bits, "); if (m_param->rc.rateControlMode == X265_RC_CRF) fprintf(m_csvfpt, "RateFactor, "); fprintf(m_csvfpt, "Y PSNR, U PSNR, V PSNR, YUV PSNR, SSIM, SSIM (dB), List 0, List 1"); /* detailed performance statistics */ fprintf(m_csvfpt, ", DecideWait (ms), Row0Wait (ms), Wall time (ms), Ref Wait Wall (ms), Total CTU time (ms), Stall Time (ms), Avg WPP, Row Blocks\n"); } else fputs(summaryCSVHeader, m_csvfpt); } } if (!m_csvfpt) { x265_log(m_param, X265_LOG_ERROR, "Unable to open CSV log file <%s>, aborting\n", m_param->csvfn); m_aborted = true; } } int numRows = (m_param->sourceHeight + g_maxCUSize - 1) / g_maxCUSize; int numCols = (m_param->sourceWidth + g_maxCUSize - 1) / g_maxCUSize; for (int i = 0; i < m_param->frameNumThreads; i++) { if (!m_frameEncoder[i]->init(this, numRows, numCols)) { x265_log(m_param, X265_LOG_ERROR, "Unable to initialize frame encoder, aborting\n"); m_aborted = true; } } for (int i = 0; i < m_param->frameNumThreads; i++) { m_frameEncoder[i]->start();// m_frameEncoder[i]->m_done.wait(); //完成设置为等待/* wait for thread to initialize */ } if (m_param->bEmitHRDSEI) m_rateControl->initHRD(m_sps); if (!m_rateControl->init(m_sps)) m_aborted = true; if (!m_lookahead->create())//申请lookachead空间用于帧类型决策 m_aborted = true; if (m_param->analysisMode) { const char* name = m_param->analysisFileName; if (!name) name = defaultAnalysisFileName; const char* mode = m_param->analysisMode == X265_ANALYSIS_LOAD ? "rb" : "wb"; m_analysisFile = fopen(name, mode); if (!m_analysisFile) { x265_log(NULL, X265_LOG_ERROR, "Analysis load/save: failed to open file %s\n", name); m_aborted = true; } } m_bZeroLatency = !m_param->bframes && !m_param->lookaheadDepth && m_param->frameNumThreads == 1;//判断是否是零延迟,没有B帧,没有lookachead 不启用帧级并行编码 m_aborted |= parseLambdaFile(m_param); m_encodeStartTime = x265_mdate(); m_nalList.m_annexB = !!m_param->bAnnexB;}void Encoder::stopJobs(){ if (m_rateControl) m_rateControl->terminate(); // unblock all blocked RC calls if (m_lookahead) m_lookahead->stopJobs(); //停止帧类型决策任务,等它完毕再停止 for (int i = 0; i < m_param->frameNumThreads; i++) { if (m_frameEncoder[i]) { m_frameEncoder[i]->getEncodedPicture(m_nalList); m_frameEncoder[i]->m_threadActive = false; m_frameEncoder[i]->m_enable.trigger(); m_frameEncoder[i]->stop(); } } if (m_threadPool) m_threadPool->stopWorkers();}void Encoder::destroy(){ if (m_exportedPic) { ATOMIC_DEC(&m_exportedPic->m_countRefEncoders); m_exportedPic = NULL; } for (int i = 0; i < m_param->frameNumThreads; i++) { if (m_frameEncoder[i]) { m_frameEncoder[i]->destroy(); delete m_frameEncoder[i]; } } // thread pools can be cleaned up now that all the JobProviders are // known to be shutdown delete [] m_threadPool; if (m_lookahead) { m_lookahead->destroy();//释放帧类型决策类内存 delete m_lookahead; } delete m_dpb; if (m_rateControl) { m_rateControl->destroy(); delete m_rateControl; } X265_FREE(m_cuOffsetY); X265_FREE(m_cuOffsetC); X265_FREE(m_buOffsetY); X265_FREE(m_buOffsetC); if (m_analysisFile) fclose(m_analysisFile); if (m_csvfpt) fclose(m_csvfpt); if (m_param) { /* release string arguments that were strdup'd */ free((char*)m_param->rc.lambdaFileName); free((char*)m_param->rc.statFileName); free((char*)m_param->analysisFileName); free((char*)m_param->scalingLists); free((char*)m_param->csvfn); free((char*)m_param->numaPools); free((char*)m_param->masteringDisplayColorVolume); free((char*)m_param->contentLightLevelInfo); x265_param_free(m_param); } x265_param_free(m_latestParam);}void Encoder::updateVbvPlan(RateControl* rc){ for (int i = 0; i < m_param->frameNumThreads; i++) { FrameEncoder *encoder = m_frameEncoder[i]; if (encoder->m_rce.isActive && encoder->m_rce.poc != rc->m_curSlice->m_poc) { int64_t bits = (int64_t) X265_MAX(encoder->m_rce.frameSizeEstimated, encoder->m_rce.frameSizePlanned); rc->m_bufferFill -= bits; rc->m_bufferFill = X265_MAX(rc->m_bufferFill, 0); rc->m_bufferFill += encoder->m_rce.bufferRate; rc->m_bufferFill = X265_MIN(rc->m_bufferFill, rc->m_bufferSize); if (rc->m_2pass) rc->m_predictedBits += bits; } }}/** * Feed one new input frame into the encoder, get one frame out. If pic_in is * NULL, a flush condition is implied and pic_in must be NULL for all subsequent * calls for this encoder instance. * * pic_in input original YUV picture or NULL * pic_out pointer to reconstructed picture struct * * returns 0 if no frames are currently available for output * 1 if frame was output, m_nalList contains access unit * negative on malloc error or abort *//** 函数功能 : ?????/* 调用范围 : ???只在PreLookaheadGroup::processTasks函数中被调用* \参数 fenc : ???当前帧(经过1/2下采样后的数据)* 返回值 : 异常退出-1???null**/int Encoder::encode(const x265_picture* pic_in, x265_picture* pic_out){#if CHECKED_BUILD || _DEBUG if (g_checkFailures) //检错处理:正常情况不会进入 { x265_log(m_param, X265_LOG_ERROR, "encoder aborting because of internal error\n"); return -1; //异常退出 }#endif if (m_aborted) //检错处理:正常情况不会进入 return -1; //异常退出 if (m_exportedPic) //??? { ATOMIC_DEC(&m_exportedPic->m_countRefEncoders); m_exportedPic = NULL; m_dpb->recycleUnreferenced(); } if (pic_in) //如果当前有读入帧 (没有可能已经读完原始帧,但是lookachead buffer里面依然有待编码帧) { if (pic_in->colorSpace != m_param->internalCsp) //检错,是否配置成功(取样格式 4:4:4 4:2:0) { x265_log(m_param, X265_LOG_ERROR, "Unsupported color space (%d) on input\n", pic_in->colorSpace); return -1; //异常退出 } if (pic_in->bitDepth < 8 || pic_in->bitDepth > 16) //检错像素深度 { x265_log(m_param, X265_LOG_ERROR, "Input bit depth (%d) must be between 8 and 16\n", pic_in->bitDepth); return -1;//异常退出 } Frame *inFrame; //即将create 用于存储视频帧 if (m_dpb->m_freeList.empty()) //m_freeList为空 一般一开始会一直进入,随后只进入else ???为什么这样,待确定 { inFrame = new Frame; //申请空间 x265_param* p = m_reconfigured? m_latestParam : m_param; //选择新的配置文件 if (inFrame->create(p)) //申请frame空间 { /* the first PicYuv created is asked to generate the CU and block unit offset * arrays which are then shared with all subsequent PicYuv (orig and recon) * allocated by this top level encoder */ if (m_cuOffsetY) //已经申请过空间,不用再进入else 将encoder offset指针赋值到对应m_fencPic对象中 { inFrame->m_fencPic->m_cuOffsetC = m_cuOffsetC; //空间为一帧LCU个数,按照行列对应色度LCU的pixel地址 inFrame->m_fencPic->m_cuOffsetY = m_cuOffsetY; //空间为一帧LCU个数,按照行列对应亮度LCU的pixel地址 inFrame->m_fencPic->m_buOffsetC = m_buOffsetC; //空间为一个LCU的part个数(默认256个4x4),为当前色度位置与LCU首地址的偏移地址 inFrame->m_fencPic->m_buOffsetY = m_buOffsetY; //空间为一个LCU的part个数(默认256个4x4),为当前亮度位置与LCU首地址的偏移地址 } else { if (!inFrame->m_fencPic->createOffsets(m_sps))//申请偏移计算空间 { //报错正常不会进入 m_aborted = true; x265_log(m_param, X265_LOG_ERROR, "memory allocation failure, aborting encode\n"); inFrame->destroy(); delete inFrame; return -1; //异常退出 } else { //申请内存正常 会进出入此:将encoder offset值置为对应m_fencPic对象中的指针值 m_cuOffsetC = inFrame->m_fencPic->m_cuOffsetC;//空间为一帧LCU个数,按照行列对应色度LCU的pixel地址 m_cuOffsetY = inFrame->m_fencPic->m_cuOffsetY;//空间为一帧LCU个数,按照行列对应亮度LCU的pixel地址 m_buOffsetC = inFrame->m_fencPic->m_buOffsetC;//空间为一个LCU的part个数(默认256个4x4),为当前色度位置与LCU首地址的偏移地址 m_buOffsetY = inFrame->m_fencPic->m_buOffsetY;//空间为一个LCU的part个数(默认256个4x4),为当前亮度位置与LCU首地址的偏移地址 } } } else { //报错信息,正常不会进入 m_aborted = true; x265_log(m_param, X265_LOG_ERROR, "memory allocation failure, aborting encode\n"); inFrame->destroy(); delete inFrame; return -1; //异常退出 } } //if (m_dpb->m_freeList.empty()) else { inFrame = m_dpb->m_freeList.popBack();//直接从buf中获取空间 ???mdpb用途?? inFrame->m_lowresInit = false; //标示未初始化 } /* Copy input picture into a Frame and PicYuv, send to lookahead */ inFrame->m_fencPic->copyFromPicture(*pic_in, m_sps.conformanceWindow.rightOffset, m_sps.conformanceWindow.bottomOffset);//获取原始帧数据//其它深度数据copy以及扩边??? inFrame->m_poc = ++m_pocLast;//累加读入帧数 inFrame->m_userData = pic_in->userData;//一般都为0????? inFrame->m_pts = pic_in->pts;//一般就是对应poc的值(也可以赋值传入的pts号) inFrame->m_forceqp = pic_in->forceqp;//??????qpfile 一般为0 inFrame->m_param = m_reconfigured ? m_latestParam : m_param;//????? if (m_pocLast == 0) m_firstPts = inFrame->m_pts;//第一帧,其值等于最先进入的pts号(一般等于0) if (m_bframeDelay && m_pocLast == m_bframeDelay) m_bframeDelayTime = inFrame->m_pts - m_firstPts;//只进入一次,计算延迟的pts号个数 /* Encoder holds a reference count until stats collection is finished */ ATOMIC_INC(&inFrame->m_countRefEncoders);//将当前的被参考次数设置为1 防止后面被释放 此处值为1 if ((m_param->rc.aqMode || m_param->bEnableWeightedPred || m_param->bEnableWeightedBiPred) && (m_param->rc.cuTree && m_param->rc.bStatRead))//??? { if (!m_rateControl->cuTreeReadFor2Pass(inFrame)) { m_aborted = 1; return -1; } } /* Use the frame types from the first pass, if available */ int sliceType = (m_param->rc.bStatRead) ? m_rateControl->rateControlSliceType(inFrame->m_poc) : pic_in->sliceType;//1pass中,如果没有经过parseQPFile,则slicetyoe 为X265_TYPE_AUTO //2pass中,通过1pass结果直接获取帧类型??? /* In analysisSave mode, x265_analysis_data is allocated in pic_in and inFrame points to this */ /* Load analysis data before lookahead->addPicture, since sliceType has been decided */ if (m_param->analysisMode == X265_ANALYSIS_LOAD)//???? { x265_picture* inputPic = const_cast
(pic_in); /* readAnalysisFile reads analysis data for the frame and allocates memory based on slicetype */ readAnalysisFile(&inputPic->analysisData, inFrame->m_poc); inFrame->m_analysisData.poc = inFrame->m_poc; inFrame->m_analysisData.sliceType = inputPic->analysisData.sliceType; inFrame->m_analysisData.numCUsInFrame = inputPic->analysisData.numCUsInFrame; inFrame->m_analysisData.numPartitions = inputPic->analysisData.numPartitions; inFrame->m_analysisData.interData = inputPic->analysisData.interData; inFrame->m_analysisData.intraData = inputPic->analysisData.intraData; sliceType = inputPic->analysisData.sliceType; } m_lookahead->addPicture(*inFrame, sliceType);//向输入列表中添加原始帧准备帧类型决策,在buffer满时,触发帧类型决策 m_numDelayedPic++;//当前列表中有多少帧未编码 每当读入一帧++,每当编码完毕一帧减-- } //if (pic_in) else m_lookahead->flush();//当前已经读取原始帧完毕,往后不用再继续读取,告知lookahead已满 FrameEncoder *curEncoder = m_frameEncoder[m_curEncoder];// 获取当前frameEncoder m_curEncoder = (m_curEncoder + 1) % m_param->frameNumThreads;// 记录下一个frameEncoder int ret = 0;//返回是否已经编码过一帧,返回值0或者1 /* Normal operation is to wait for the current frame encoder to complete its current frame * and then to give it a new frame to work on. In zero-latency mode, we must encode this * input picture before returning so the order must be reversed. This do/while() loop allows * us to alternate the order of the calls without ugly code replication */ Frame* outFrame = NULL;//??? Frame* frameEnc = NULL;//??? int pass = 0;//零延迟情况:有两个取值(0,1) 0表示读帧类型决定完毕的帧准备编码 1表示编码完毕写数据 其他情况:只有一个取值0 do//循环功能:零延迟情况:pass=0 编码 pass =1 编码完毕写数据 循环两次 其它情况:只做一次 多线程控制编码与写数据 { /* getEncodedPicture() should block until the FrameEncoder has completed * encoding the frame. This is how back-pressure through the API is * accomplished when the encoder is full */ if (!m_bZeroLatency || pass)//零延迟情况:只有在pass=1的时候才会进入 其它情况:都进入 outFrame = curEncoder->getEncodedPicture(m_nalList);//获取已经编码完毕的帧???多线程等待 if (outFrame)//如果已经编码过 { Slice *slice = outFrame->m_encData->m_slice; /* Free up pic_in->analysisData since it has already been used */ if (m_param->analysisMode == X265_ANALYSIS_LOAD) freeAnalysis(&outFrame->m_analysisData); if (pic_out) { PicYuv *recpic = outFrame->m_reconPic; pic_out->poc = slice->m_poc; pic_out->bitDepth = X265_DEPTH; pic_out->userData = outFrame->m_userData; pic_out->colorSpace = m_param->internalCsp; pic_out->pts = outFrame->m_pts; pic_out->dts = outFrame->m_dts; switch (slice->m_sliceType) { case I_SLICE: pic_out->sliceType = outFrame->m_lowres.bKeyframe ? X265_TYPE_IDR : X265_TYPE_I; break; case P_SLICE: pic_out->sliceType = X265_TYPE_P; break; case B_SLICE: pic_out->sliceType = X265_TYPE_B; break; } pic_out->planes[0] = recpic->m_picOrg[0]; pic_out->stride[0] = (int)(recpic->m_stride * sizeof(pixel)); pic_out->planes[1] = recpic->m_picOrg[1]; pic_out->stride[1] = (int)(recpic->m_strideC * sizeof(pixel)); pic_out->planes[2] = recpic->m_picOrg[2]; pic_out->stride[2] = (int)(recpic->m_strideC * sizeof(pixel)); /* Dump analysis data from pic_out to file in save mode and free */ if (m_param->analysisMode == X265_ANALYSIS_SAVE) { pic_out->analysisData.poc = pic_out->poc; pic_out->analysisData.sliceType = pic_out->sliceType; pic_out->analysisData.numCUsInFrame = outFrame->m_analysisData.numCUsInFrame; pic_out->analysisData.numPartitions = outFrame->m_analysisData.numPartitions; pic_out->analysisData.interData = outFrame->m_analysisData.interData; pic_out->analysisData.intraData = outFrame->m_analysisData.intraData; writeAnalysisFile(&pic_out->analysisData); freeAnalysis(&pic_out->analysisData); } } if (slice->m_sliceType == P_SLICE) { if (slice->m_weightPredTable[0][0][0].bPresentFlag) m_numLumaWPFrames++; if (slice->m_weightPredTable[0][0][1].bPresentFlag || slice->m_weightPredTable[0][0][2].bPresentFlag) m_numChromaWPFrames++; } else if (slice->m_sliceType == B_SLICE) { bool bLuma = false, bChroma = false; for (int l = 0; l < 2; l++) { if (slice->m_weightPredTable[l][0][0].bPresentFlag) bLuma = true; if (slice->m_weightPredTable[l][0][1].bPresentFlag || slice->m_weightPredTable[l][0][2].bPresentFlag) bChroma = true; } if (bLuma) m_numLumaWPBiFrames++; if (bChroma) m_numChromaWPBiFrames++; } if (m_aborted) return -1; finishFrameStats(outFrame, curEncoder, curEncoder->m_accessUnitBits); /* Allow this frame to be recycled if no frame encoders are using it for reference */ if (!pic_out) { ATOMIC_DEC(&outFrame->m_countRefEncoders); m_dpb->recycleUnreferenced(); } else m_exportedPic = outFrame; m_numDelayedPic--; ret = 1; }//if (outFrame) /* pop a single frame from decided list, then provide to frame encoder * curEncoder is guaranteed to be idle at this point */ if (!pass)//零延迟情况:只有在pass=0的时候才会进入 其它情况:都进入 frameEnc = m_lookahead->getDecidedPicture();//获取已经得到帧类型的原始帧 if (frameEnc && !pass)//零延迟情况:只有在pass=0并且有可用帧的时候才会进入 其它情况:在有可用帧的时候进入 { /* give this frame a FrameData instance before encoding */ if (m_dpb->m_picSymFreeList)//??? { frameEnc->m_encData = m_dpb->m_picSymFreeList; m_dpb->m_picSymFreeList = m_dpb->m_picSymFreeList->m_freeListNext; frameEnc->reinit(m_sps); } else { frameEnc->allocEncodeData(m_param, m_sps);//申请重构帧内存并初始化为0,申请一帧CTU的存储空间,初始化CTU、初始化统计信息 Slice* slice = frameEnc->m_encData->m_slice;//获取slice指针 slice->m_sps = &m_sps;//获取SPS指针 slice->m_pps = &m_pps;//获取PPS指针 slice->m_maxNumMergeCand = m_param->maxNumMergeCand;//获取配置的Merge选择的候选个数 slice->m_endCUAddr = slice->realEndAddress(m_sps.numCUsInFrame * NUM_4x4_PARTITIONS);//一帧中最后实际像素在帧中的4x4块标号+1 frameEnc->m_reconPic->m_cuOffsetC = m_cuOffsetC;//将encoder offset指针赋值到对应frameEnc->m_reconPic对象中 frameEnc->m_reconPic->m_cuOffsetY = m_cuOffsetY;//将encoder offset指针赋值到对应frameEnc->m_reconPic对象中 frameEnc->m_reconPic->m_buOffsetC = m_buOffsetC;//将encoder offset指针赋值到对应frameEnc->m_reconPic对象中 frameEnc->m_reconPic->m_buOffsetY = m_buOffsetY;//将encoder offset指针赋值到对应frameEnc->m_reconPic对象中 } curEncoder->m_rce.encodeOrder = m_encodedFrameNum++;//获取当前编码顺序(从0开始计数) if (m_bframeDelay)//有延迟 (获取DTS) { int64_t *prevReorderedPts = m_prevReorderedPts; frameEnc->m_dts = m_encodedFrameNum > m_bframeDelay ? prevReorderedPts[(m_encodedFrameNum - m_bframeDelay) % m_bframeDelay] //在开始不多于延迟帧数的时候需要计算,其它直接从数组中获取 : frameEnc->m_reorderedPts - m_bframeDelayTime; prevReorderedPts[m_encodedFrameNum % m_bframeDelay] = frameEnc->m_reorderedPts; } else frameEnc->m_dts = frameEnc->m_reorderedPts;//零延迟:解码顺序等于编码顺序 /* Allocate analysis data before encode in save mode. This is allocated in frameEnc */ if (m_param->analysisMode == X265_ANALYSIS_SAVE)//???? { x265_analysis_data* analysis = &frameEnc->m_analysisData; analysis->poc = frameEnc->m_poc; analysis->sliceType = frameEnc->m_lowres.sliceType; uint32_t widthInCU = (m_param->sourceWidth + g_maxCUSize - 1) >> g_maxLog2CUSize; uint32_t heightInCU = (m_param->sourceHeight + g_maxCUSize - 1) >> g_maxLog2CUSize; uint32_t numCUsInFrame = widthInCU * heightInCU; analysis->numCUsInFrame = numCUsInFrame; analysis->numPartitions = NUM_4x4_PARTITIONS; allocAnalysis(analysis); } /* determine references, setup RPS, etc */ m_dpb->prepareEncode(frameEnc);//设置NAL单元类型,将待编码帧加入DPB列表,获取slice参考帧列表等slice参量,将该帧的参考帧的被参考次数加一 if (m_param->rc.rateControlMode != X265_RC_CQP)//如果当前不是固定QP模式 m_lookahead->getEstimatedPictureCost(frameEnc);//获取当前帧每个CTU行对应下采样帧的每个8x8的块cost的累计值 /* Allow FrameEncoder::compressFrame() to start in the frame encoder thread */ if (!curEncoder->startCompressFrame(frameEnc))//触发compressframe()进行编码 m_aborted = true;//异常状态标记 }//if (frameEnc && !pass) else if (m_encodedFrameNum)//???零延迟情况:只有在pass=0??? 其它情况:一般不进入??? m_rateControl->setFinalFrameCount(m_encodedFrameNum); } while (m_bZeroLatency && ++pass < 2);//循环功能:零延迟情况:pass=0 编码 pass =1 编码完毕写数据 循环两次 其它情况:只做一次 多线程控制编码与写数据 return ret;}int Encoder::reconfigureParam(x265_param* encParam, x265_param* param){ encParam->maxNumReferences = param->maxNumReferences; // never uses more refs than specified in stream headers encParam->bEnableLoopFilter = param->bEnableLoopFilter; encParam->deblockingFilterTCOffset = param->deblockingFilterTCOffset; encParam->deblockingFilterBetaOffset = param->deblockingFilterBetaOffset; encParam->bEnableFastIntra = param->bEnableFastIntra; encParam->bEnableEarlySkip = param->bEnableEarlySkip; encParam->bEnableTemporalMvp = param->bEnableTemporalMvp; /* Scratch buffer prevents me_range from being increased for esa/tesa if (param->searchMethod < X265_FULL_SEARCH || param->searchMethod < encParam->searchRange) encParam->searchRange = param->searchRange; */ encParam->noiseReductionInter = param->noiseReductionInter; encParam->noiseReductionIntra = param->noiseReductionIntra; /* We can't switch out of subme=0 during encoding. */ if (encParam->subpelRefine) encParam->subpelRefine = param->subpelRefine; encParam->rdoqLevel = param->rdoqLevel; encParam->rdLevel = param->rdLevel; encParam->bEnableTSkipFast = param->bEnableTSkipFast; encParam->psyRd = param->psyRd; encParam->psyRdoq = param->psyRdoq; encParam->bEnableSignHiding = param->bEnableSignHiding; encParam->bEnableFastIntra = param->bEnableFastIntra; encParam->maxTUSize = param->maxTUSize; return x265_check_params(encParam);}void EncStats::addPsnr(double psnrY, double psnrU, double psnrV){ m_psnrSumY += psnrY; m_psnrSumU += psnrU; m_psnrSumV += psnrV;}void EncStats::addBits(uint64_t bits){ m_accBits += bits; m_numPics++;}void EncStats::addSsim(double ssim){ m_globalSsim += ssim;}void EncStats::addQP(double aveQp){ m_totalQp += aveQp;}char* Encoder::statsCSVString(EncStats& stat, char* buffer){ if (!stat.m_numPics) { sprintf(buffer, "-, -, -, -, -, -, -, "); return buffer; } double fps = (double)m_param->fpsNum / m_param->fpsDenom; double scale = fps / 1000 / (double)stat.m_numPics; int len = sprintf(buffer, "%-6u, ", stat.m_numPics); len += sprintf(buffer + len, "%2.2lf, ", stat.m_totalQp / (double)stat.m_numPics); len += sprintf(buffer + len, "%-8.2lf, ", stat.m_accBits * scale); if (m_param->bEnablePsnr) { len += sprintf(buffer + len, "%.3lf, %.3lf, %.3lf, ", stat.m_psnrSumY / (double)stat.m_numPics, stat.m_psnrSumU / (double)stat.m_numPics, stat.m_psnrSumV / (double)stat.m_numPics); } else len += sprintf(buffer + len, "-, -, -, "); if (m_param->bEnableSsim) sprintf(buffer + len, "%.3lf, ", x265_ssim2dB(stat.m_globalSsim / (double)stat.m_numPics)); else sprintf(buffer + len, "-, "); return buffer;}char* Encoder::statsString(EncStats& stat, char* buffer){ double fps = (double)m_param->fpsNum / m_param->fpsDenom; double scale = fps / 1000 / (double)stat.m_numPics; int len = sprintf(buffer, "%6u, ", stat.m_numPics); len += sprintf(buffer + len, "Avg QP:%2.2lf", stat.m_totalQp / (double)stat.m_numPics); len += sprintf(buffer + len, " kb/s: %-8.2lf", stat.m_accBits * scale); if (m_param->bEnablePsnr) { len += sprintf(buffer + len, " PSNR Mean: Y:%.3lf U:%.3lf V:%.3lf", stat.m_psnrSumY / (double)stat.m_numPics, stat.m_psnrSumU / (double)stat.m_numPics, stat.m_psnrSumV / (double)stat.m_numPics); } if (m_param->bEnableSsim) { sprintf(buffer + len, " SSIM Mean: %.6lf (%.3lfdB)", stat.m_globalSsim / (double)stat.m_numPics, x265_ssim2dB(stat.m_globalSsim / (double)stat.m_numPics)); } return buffer;}void Encoder::printSummary(){ if (m_param->logLevel < X265_LOG_INFO) return; char buffer[200]; if (m_analyzeI.m_numPics) x265_log(m_param, X265_LOG_INFO, "frame I: %s\n", statsString(m_analyzeI, buffer)); if (m_analyzeP.m_numPics) x265_log(m_param, X265_LOG_INFO, "frame P: %s\n", statsString(m_analyzeP, buffer)); if (m_analyzeB.m_numPics) x265_log(m_param, X265_LOG_INFO, "frame B: %s\n", statsString(m_analyzeB, buffer)); if (m_analyzeAll.m_numPics) x265_log(m_param, X265_LOG_INFO, "global : %s\n", statsString(m_analyzeAll, buffer)); if (m_param->bEnableWeightedPred && m_analyzeP.m_numPics) { x265_log(m_param, X265_LOG_INFO, "Weighted P-Frames: Y:%.1f%% UV:%.1f%%\n", (float)100.0 * m_numLumaWPFrames / m_analyzeP.m_numPics, (float)100.0 * m_numChromaWPFrames / m_analyzeP.m_numPics); } if (m_param->bEnableWeightedBiPred && m_analyzeB.m_numPics) { x265_log(m_param, X265_LOG_INFO, "Weighted B-Frames: Y:%.1f%% UV:%.1f%%\n", (float)100.0 * m_numLumaWPBiFrames / m_analyzeB.m_numPics, (float)100.0 * m_numChromaWPBiFrames / m_analyzeB.m_numPics); } int pWithB = 0; for (int i = 0; i <= m_param->bframes; i++) pWithB += m_lookahead->m_histogram[i]; if (pWithB) { int p = 0; for (int i = 0; i <= m_param->bframes; i++) p += sprintf(buffer + p, "%.1f%% ", 100. * m_lookahead->m_histogram[i] / pWithB); x265_log(m_param, X265_LOG_INFO, "consecutive B-frames: %s\n", buffer); } if (m_param->bLossless) { float frameSize = (float)(m_param->sourceWidth - m_sps.conformanceWindow.rightOffset) * (m_param->sourceHeight - m_sps.conformanceWindow.bottomOffset); float uncompressed = frameSize * X265_DEPTH * m_analyzeAll.m_numPics; x265_log(m_param, X265_LOG_INFO, "lossless compression ratio %.2f::1\n", uncompressed / m_analyzeAll.m_accBits); }#if DETAILED_CU_STATS /* Summarize stats from all frame encoders */ CUStats cuStats; for (int i = 0; i < m_param->frameNumThreads; i++) cuStats.accumulate(m_frameEncoder[i]->m_cuStats); if (!cuStats.totalCTUTime) return; int totalWorkerCount = 0; for (int i = 0; i < m_numPools; i++) totalWorkerCount += m_threadPool[i].m_numWorkers; int64_t batchElapsedTime, coopSliceElapsedTime; uint64_t batchCount, coopSliceCount; m_lookahead->getWorkerStats(batchElapsedTime, batchCount, coopSliceElapsedTime, coopSliceCount); int64_t lookaheadWorkerTime = m_lookahead->m_slicetypeDecideElapsedTime + m_lookahead->m_preLookaheadElapsedTime + batchElapsedTime + coopSliceElapsedTime; int64_t totalWorkerTime = cuStats.totalCTUTime + cuStats.loopFilterElapsedTime + cuStats.pmodeTime + cuStats.pmeTime + lookaheadWorkerTime + cuStats.weightAnalyzeTime; int64_t elapsedEncodeTime = x265_mdate() - m_encodeStartTime; int64_t interRDOTotalTime = 0, intraRDOTotalTime = 0; uint64_t interRDOTotalCount = 0, intraRDOTotalCount = 0; for (uint32_t i = 0; i <= g_maxCUDepth; i++) { interRDOTotalTime += cuStats.interRDOElapsedTime[i]; intraRDOTotalTime += cuStats.intraRDOElapsedTime[i]; interRDOTotalCount += cuStats.countInterRDO[i]; intraRDOTotalCount += cuStats.countIntraRDO[i]; } /* Time within compressCTU() and pmode tasks not captured by ME, Intra mode selection, or RDO (2Nx2N merge, 2Nx2N bidir, etc) */ int64_t unaccounted = (cuStats.totalCTUTime + cuStats.pmodeTime) - (cuStats.intraAnalysisElapsedTime + cuStats.motionEstimationElapsedTime + interRDOTotalTime + intraRDOTotalTime);#define ELAPSED_SEC(val) ((double)(val) / 1000000)#define ELAPSED_MSEC(val) ((double)(val) / 1000) if (m_param->bDistributeMotionEstimation && cuStats.countPMEMasters) { x265_log(m_param, X265_LOG_INFO, "CU: %%%05.2lf time spent in motion estimation, averaging %.3lf CU inter modes per CTU\n", 100.0 * (cuStats.motionEstimationElapsedTime + cuStats.pmeTime) / totalWorkerTime, (double)cuStats.countMotionEstimate / cuStats.totalCTUs); x265_log(m_param, X265_LOG_INFO, "CU: %.3lf PME masters per inter CU, each blocked an average of %.3lf ns\n", (double)cuStats.countPMEMasters / cuStats.countMotionEstimate, (double)cuStats.pmeBlockTime / cuStats.countPMEMasters); x265_log(m_param, X265_LOG_INFO, "CU: %.3lf slaves per PME master, each took an average of %.3lf ms\n", (double)cuStats.countPMETasks / cuStats.countPMEMasters, ELAPSED_MSEC(cuStats.pmeTime) / cuStats.countPMETasks); } else { x265_log(m_param, X265_LOG_INFO, "CU: %%%05.2lf time spent in motion estimation, averaging %.3lf CU inter modes per CTU\n", 100.0 * cuStats.motionEstimationElapsedTime / totalWorkerTime, (double)cuStats.countMotionEstimate / cuStats.totalCTUs); } x265_log(m_param, X265_LOG_INFO, "CU: %%%05.2lf time spent in intra analysis, averaging %.3lf Intra PUs per CTU\n", 100.0 * cuStats.intraAnalysisElapsedTime / totalWorkerTime, (double)cuStats.countIntraAnalysis / cuStats.totalCTUs); x265_log(m_param, X265_LOG_INFO, "CU: %%%05.2lf time spent in inter RDO, measuring %.3lf inter/merge predictions per CTU\n", 100.0 * interRDOTotalTime / totalWorkerTime, (double)interRDOTotalCount / cuStats.totalCTUs); x265_log(m_param, X265_LOG_INFO, "CU: %%%05.2lf time spent in intra RDO, measuring %.3lf intra predictions per CTU\n", 100.0 * intraRDOTotalTime / totalWorkerTime, (double)intraRDOTotalCount / cuStats.totalCTUs); x265_log(m_param, X265_LOG_INFO, "CU: %%%05.2lf time spent in loop filters, average %.3lf ms per call\n", 100.0 * cuStats.loopFilterElapsedTime / totalWorkerTime, ELAPSED_MSEC(cuStats.loopFilterElapsedTime) / cuStats.countLoopFilter); if (cuStats.countWeightAnalyze && cuStats.weightAnalyzeTime) { x265_log(m_param, X265_LOG_INFO, "CU: %%%05.2lf time spent in weight analysis, average %.3lf ms per call\n", 100.0 * cuStats.weightAnalyzeTime / totalWorkerTime, ELAPSED_MSEC(cuStats.weightAnalyzeTime) / cuStats.countWeightAnalyze); } if (m_param->bDistributeModeAnalysis && cuStats.countPModeMasters) { x265_log(m_param, X265_LOG_INFO, "CU: %.3lf PMODE masters per CTU, each blocked an average of %.3lf ns\n", (double)cuStats.countPModeMasters / cuStats.totalCTUs, (double)cuStats.pmodeBlockTime / cuStats.countPModeMasters); x265_log(m_param, X265_LOG_INFO, "CU: %.3lf slaves per PMODE master, each took average of %.3lf ms\n", (double)cuStats.countPModeTasks / cuStats.countPModeMasters, ELAPSED_MSEC(cuStats.pmodeTime) / cuStats.countPModeTasks); } x265_log(m_param, X265_LOG_INFO, "CU: %%%05.2lf time spent in slicetypeDecide (avg %.3lfms) and prelookahead (avg %.3lfms)\n", 100.0 * lookaheadWorkerTime / totalWorkerTime, ELAPSED_MSEC(m_lookahead->m_slicetypeDecideElapsedTime) / m_lookahead->m_countSlicetypeDecide, ELAPSED_MSEC(m_lookahead->m_preLookaheadElapsedTime) / m_lookahead->m_countPreLookahead); x265_log(m_param, X265_LOG_INFO, "CU: %%%05.2lf time spent in other tasks\n", 100.0 * unaccounted / totalWorkerTime); if (intraRDOTotalTime && intraRDOTotalCount) { x265_log(m_param, X265_LOG_INFO, "CU: Intra RDO time per depth %%%05.2lf %%%05.2lf %%%05.2lf %%%05.2lf\n", 100.0 * cuStats.intraRDOElapsedTime[0] / intraRDOTotalTime, // 64 100.0 * cuStats.intraRDOElapsedTime[1] / intraRDOTotalTime, // 32 100.0 * cuStats.intraRDOElapsedTime[2] / intraRDOTotalTime, // 16 100.0 * cuStats.intraRDOElapsedTime[3] / intraRDOTotalTime); // 8 x265_log(m_param, X265_LOG_INFO, "CU: Intra RDO calls per depth %%%05.2lf %%%05.2lf %%%05.2lf %%%05.2lf\n", 100.0 * cuStats.countIntraRDO[0] / intraRDOTotalCount, // 64 100.0 * cuStats.countIntraRDO[1] / intraRDOTotalCount, // 32 100.0 * cuStats.countIntraRDO[2] / intraRDOTotalCount, // 16 100.0 * cuStats.countIntraRDO[3] / intraRDOTotalCount); // 8 } if (interRDOTotalTime && interRDOTotalCount) { x265_log(m_param, X265_LOG_INFO, "CU: Inter RDO time per depth %%%05.2lf %%%05.2lf %%%05.2lf %%%05.2lf\n", 100.0 * cuStats.interRDOElapsedTime[0] / interRDOTotalTime, // 64 100.0 * cuStats.interRDOElapsedTime[1] / interRDOTotalTime, // 32 100.0 * cuStats.interRDOElapsedTime[2] / interRDOTotalTime, // 16 100.0 * cuStats.interRDOElapsedTime[3] / interRDOTotalTime); // 8 x265_log(m_param, X265_LOG_INFO, "CU: Inter RDO calls per depth %%%05.2lf %%%05.2lf %%%05.2lf %%%05.2lf\n", 100.0 * cuStats.countInterRDO[0] / interRDOTotalCount, // 64 100.0 * cuStats.countInterRDO[1] / interRDOTotalCount, // 32 100.0 * cuStats.countInterRDO[2] / interRDOTotalCount, // 16 100.0 * cuStats.countInterRDO[3] / interRDOTotalCount); // 8 } x265_log(m_param, X265_LOG_INFO, "CU: " X265_LL " %dX%d CTUs compressed in %.3lf seconds, %.3lf CTUs per worker-second\n", cuStats.totalCTUs, g_maxCUSize, g_maxCUSize, ELAPSED_SEC(totalWorkerTime), cuStats.totalCTUs / ELAPSED_SEC(totalWorkerTime)); if (m_threadPool) x265_log(m_param, X265_LOG_INFO, "CU: %.3lf average worker utilization, %%%05.2lf of theoretical maximum utilization\n", (double)totalWorkerTime / elapsedEncodeTime, 100.0 * totalWorkerTime / (elapsedEncodeTime * totalWorkerCount));#undef ELAPSED_SEC#undef ELAPSED_MSEC#endif if (!m_param->bLogCuStats) return; for (int sliceType = 2; sliceType >= 0; sliceType--) { if (sliceType == P_SLICE && !m_analyzeP.m_numPics) continue; if (sliceType == B_SLICE && !m_analyzeB.m_numPics) continue; StatisticLog finalLog; for (uint32_t depth = 0; depth <= g_maxCUDepth; depth++) { int cuSize = g_maxCUSize >> depth; for (int i = 0; i < m_param->frameNumThreads; i++) { StatisticLog& enclog = m_frameEncoder[i]->m_sliceTypeLog[sliceType]; if (!depth) finalLog.totalCu += enclog.totalCu; finalLog.cntIntra[depth] += enclog.cntIntra[depth]; for (int m = 0; m < INTER_MODES; m++) { if (m < INTRA_MODES) finalLog.cuIntraDistribution[depth][m] += enclog.cuIntraDistribution[depth][m]; finalLog.cuInterDistribution[depth][m] += enclog.cuInterDistribution[depth][m]; } if (cuSize == 8 && m_sps.quadtreeTULog2MinSize < 3) finalLog.cntIntraNxN += enclog.cntIntraNxN; if (sliceType != I_SLICE) { finalLog.cntTotalCu[depth] += enclog.cntTotalCu[depth]; finalLog.cntInter[depth] += enclog.cntInter[depth]; finalLog.cntSkipCu[depth] += enclog.cntSkipCu[depth]; } } uint64_t cntInter, cntSkipCu, cntIntra = 0, cntIntraNxN = 0, encCu = 0; uint64_t cuInterDistribution[INTER_MODES], cuIntraDistribution[INTRA_MODES]; // check for 0/0, if true assign 0 else calculate percentage for (int n = 0; n < INTER_MODES; n++) { if (!finalLog.cntInter[depth]) cuInterDistribution[n] = 0; else cuInterDistribution[n] = (finalLog.cuInterDistribution[depth][n] * 100) / finalLog.cntInter[depth]; if (n < INTRA_MODES) { if (!finalLog.cntIntra[depth]) { cntIntraNxN = 0; cuIntraDistribution[n] = 0; } else { cntIntraNxN = (finalLog.cntIntraNxN * 100) / finalLog.cntIntra[depth]; cuIntraDistribution[n] = (finalLog.cuIntraDistribution[depth][n] * 100) / finalLog.cntIntra[depth]; } } } if (!finalLog.totalCu) encCu = 0; else if (sliceType == I_SLICE) { cntIntra = (finalLog.cntIntra[depth] * 100) / finalLog.totalCu; cntIntraNxN = (finalLog.cntIntraNxN * 100) / finalLog.totalCu; } else encCu = ((finalLog.cntIntra[depth] + finalLog.cntInter[depth]) * 100) / finalLog.totalCu; if (sliceType == I_SLICE) { cntInter = 0; cntSkipCu = 0; } else if (!finalLog.cntTotalCu[depth]) { cntInter = 0; cntIntra = 0; cntSkipCu = 0; } else { cntInter = (finalLog.cntInter[depth] * 100) / finalLog.cntTotalCu[depth]; cntIntra = (finalLog.cntIntra[depth] * 100) / finalLog.cntTotalCu[depth]; cntSkipCu = (finalLog.cntSkipCu[depth] * 100) / finalLog.cntTotalCu[depth]; } // print statistics char stats[256] = { 0 }; int len = 0; if (sliceType != I_SLICE) len += sprintf(stats + len, " EncCU "X265_LL "%% Merge "X265_LL "%%", encCu, cntSkipCu); if (cntInter) { len += sprintf(stats + len, " Inter "X265_LL "%%", cntInter); if (m_param->bEnableAMP) len += sprintf(stats + len, "(%dx%d "X265_LL "%% %dx%d "X265_LL "%% %dx%d "X265_LL "%% AMP "X265_LL "%%)", cuSize, cuSize, cuInterDistribution[0], cuSize / 2, cuSize, cuInterDistribution[2], cuSize, cuSize / 2, cuInterDistribution[1], cuInterDistribution[3]); else if (m_param->bEnableRectInter) len += sprintf(stats + len, "(%dx%d "X265_LL "%% %dx%d "X265_LL "%% %dx%d "X265_LL "%%)", cuSize, cuSize, cuInterDistribution[0], cuSize / 2, cuSize, cuInterDistribution[2], cuSize, cuSize / 2, cuInterDistribution[1]); } if (cntIntra) { len += sprintf(stats + len, " Intra "X265_LL "%%(DC "X265_LL "%% P "X265_LL "%% Ang "X265_LL "%%", cntIntra, cuIntraDistribution[0], cuIntraDistribution[1], cuIntraDistribution[2]); if (sliceType != I_SLICE) { if (cuSize == 8 && m_sps.quadtreeTULog2MinSize < 3) len += sprintf(stats + len, " %dx%d "X265_LL "%%", cuSize / 2, cuSize / 2, cntIntraNxN); } len += sprintf(stats + len, ")"); if (sliceType == I_SLICE) { if (cuSize == 8 && m_sps.quadtreeTULog2MinSize < 3) len += sprintf(stats + len, " %dx%d: "X265_LL "%%", cuSize / 2, cuSize / 2, cntIntraNxN); } } const char slicechars[] = "BPI"; if (stats[0]) x265_log(m_param, X265_LOG_INFO, "%c%-2d:%s\n", slicechars[sliceType], cuSize, stats); } }}void Encoder::fetchStats(x265_stats *stats, size_t statsSizeBytes){ if (statsSizeBytes >= sizeof(stats)) { stats->globalPsnrY = m_analyzeAll.m_psnrSumY; stats->globalPsnrU = m_analyzeAll.m_psnrSumU; stats->globalPsnrV = m_analyzeAll.m_psnrSumV; stats->encodedPictureCount = m_analyzeAll.m_numPics; stats->totalWPFrames = m_numLumaWPFrames; stats->accBits = m_analyzeAll.m_accBits; stats->elapsedEncodeTime = (double)(x265_mdate() - m_encodeStartTime) / 1000000; if (stats->encodedPictureCount > 0) { stats->globalSsim = m_analyzeAll.m_globalSsim / stats->encodedPictureCount; stats->globalPsnr = (stats->globalPsnrY * 6 + stats->globalPsnrU + stats->globalPsnrV) / (8 * stats->encodedPictureCount); stats->elapsedVideoTime = (double)stats->encodedPictureCount * m_param->fpsDenom / m_param->fpsNum; stats->bitrate = (0.001f * stats->accBits) / stats->elapsedVideoTime; } else { stats->globalSsim = 0; stats->globalPsnr = 0; stats->bitrate = 0; stats->elapsedVideoTime = 0; } } /* If new statistics are added to x265_stats, we must check here whether the * structure provided by the user is the new structure or an older one (for * future safety) */}void Encoder::writeLog(int argc, char **argv){ if (m_csvfpt) { if (m_param->logLevel >= X265_LOG_FRAME) { // adding summary to a per-frame csv log file needs a summary header fprintf(m_csvfpt, "\nSummary\n"); fputs(summaryCSVHeader, m_csvfpt); } // CLI arguments or other for (int i = 1; i < argc; i++) { if (i) fputc(' ', m_csvfpt); fputs(argv[i], m_csvfpt); } // current date and time time_t now; struct tm* timeinfo; time(&now); timeinfo = localtime(&now); char buffer[200]; strftime(buffer, 128, "%c", timeinfo); fprintf(m_csvfpt, ", %s, ", buffer); x265_stats stats; fetchStats(&stats, sizeof(stats)); // elapsed time, fps, bitrate fprintf(m_csvfpt, "%.2f, %.2f, %.2f,", stats.elapsedEncodeTime, stats.encodedPictureCount / stats.elapsedEncodeTime, stats.bitrate); if (m_param->bEnablePsnr) fprintf(m_csvfpt, " %.3lf, %.3lf, %.3lf, %.3lf,", stats.globalPsnrY / stats.encodedPictureCount, stats.globalPsnrU / stats.encodedPictureCount, stats.globalPsnrV / stats.encodedPictureCount, stats.globalPsnr); else fprintf(m_csvfpt, " -, -, -, -,"); if (m_param->bEnableSsim) fprintf(m_csvfpt, " %.6f, %6.3f,", stats.globalSsim, x265_ssim2dB(stats.globalSsim)); else fprintf(m_csvfpt, " -, -,"); fputs(statsCSVString(m_analyzeI, buffer), m_csvfpt); fputs(statsCSVString(m_analyzeP, buffer), m_csvfpt); fputs(statsCSVString(m_analyzeB, buffer), m_csvfpt); fprintf(m_csvfpt, " %s\n", x265_version_str); }}/** * Produce an ascii(hex) representation of picture digest. * * Returns: a statically allocated null-terminated string. DO NOT FREE. */static const char*digestToString(const unsigned char digest[3][16], int numChar){ const char* hex = "0123456789abcdef"; static char string[99]; int cnt = 0; for (int yuvIdx = 0; yuvIdx < 3; yuvIdx++) { for (int i = 0; i < numChar; i++) { string[cnt++] = hex[digest[yuvIdx][i] >> 4]; string[cnt++] = hex[digest[yuvIdx][i] & 0xf]; } string[cnt++] = ','; } string[cnt - 1] = '\0'; return string;}void Encoder::finishFrameStats(Frame* curFrame, FrameEncoder *curEncoder, uint64_t bits){ PicYuv* reconPic = curFrame->m_reconPic; //===== calculate PSNR ===== int width = reconPic->m_picWidth - m_sps.conformanceWindow.rightOffset; int height = reconPic->m_picHeight - m_sps.conformanceWindow.bottomOffset; int size = width * height; int maxvalY = 255 << (X265_DEPTH - 8); int maxvalC = 255 << (X265_DEPTH - 8); double refValueY = (double)maxvalY * maxvalY * size; double refValueC = (double)maxvalC * maxvalC * size / 4.0; uint64_t ssdY, ssdU, ssdV; ssdY = curEncoder->m_SSDY; ssdU = curEncoder->m_SSDU; ssdV = curEncoder->m_SSDV; double psnrY = (ssdY ? 10.0 * log10(refValueY / (double)ssdY) : 99.99); double psnrU = (ssdU ? 10.0 * log10(refValueC / (double)ssdU) : 99.99); double psnrV = (ssdV ? 10.0 * log10(refValueC / (double)ssdV) : 99.99); FrameData& curEncData = *curFrame->m_encData; Slice* slice = curEncData.m_slice; //===== add bits, psnr and ssim ===== m_analyzeAll.addBits(bits); m_analyzeAll.addQP(curEncData.m_avgQpAq); if (m_param->bEnablePsnr) m_analyzeAll.addPsnr(psnrY, psnrU, psnrV); double ssim = 0.0; if (m_param->bEnableSsim && curEncoder->m_ssimCnt) { ssim = curEncoder->m_ssim / curEncoder->m_ssimCnt; m_analyzeAll.addSsim(ssim); } if (slice->isIntra()) { m_analyzeI.addBits(bits); m_analyzeI.addQP(curEncData.m_avgQpAq); if (m_param->bEnablePsnr) m_analyzeI.addPsnr(psnrY, psnrU, psnrV); if (m_param->bEnableSsim) m_analyzeI.addSsim(ssim); } else if (slice->isInterP()) { m_analyzeP.addBits(bits); m_analyzeP.addQP(curEncData.m_avgQpAq); if (m_param->bEnablePsnr) m_analyzeP.addPsnr(psnrY, psnrU, psnrV); if (m_param->bEnableSsim) m_analyzeP.addSsim(ssim); } else if (slice->isInterB()) { m_analyzeB.addBits(bits); m_analyzeB.addQP(curEncData.m_avgQpAq); if (m_param->bEnablePsnr) m_analyzeB.addPsnr(psnrY, psnrU, psnrV); if (m_param->bEnableSsim) m_analyzeB.addSsim(ssim); } char c = (slice->isIntra() ? 'I' : slice->isInterP() ? 'P' : 'B'); int poc = slice->m_poc; if (!IS_REFERENCED(curFrame)) c += 32; // lower case if unreferenced // if debug log level is enabled, per frame console logging is performed if (m_param->logLevel >= X265_LOG_DEBUG) { char buf[1024]; int p; p = sprintf(buf, "POC:%d %c QP %2.2lf(%d) %10d bits", poc, c, curEncData.m_avgQpAq, slice->m_sliceQp, (int)bits); if (m_param->rc.rateControlMode == X265_RC_CRF) p += sprintf(buf + p, " RF:%.3lf", curEncData.m_rateFactor); if (m_param->bEnablePsnr) p += sprintf(buf + p, " [Y:%6.2lf U:%6.2lf V:%6.2lf]", psnrY, psnrU, psnrV); if (m_param->bEnableSsim) p += sprintf(buf + p, " [SSIM: %.3lfdB]", x265_ssim2dB(ssim)); if (!slice->isIntra()) { int numLists = slice->isInterP() ? 1 : 2; for (int list = 0; list < numLists; list++) { p += sprintf(buf + p, " [L%d ", list); for (int ref = 0; ref < slice->m_numRefIdx[list]; ref++) { int k = slice->m_refPOCList[list][ref] - slice->m_lastIDR; p += sprintf(buf + p, "%d ", k); } p += sprintf(buf + p, "]"); } } if (m_param->decodedPictureHashSEI && m_param->logLevel >= X265_LOG_FULL) { const char* digestStr = NULL; if (m_param->decodedPictureHashSEI == 1) { digestStr = digestToString(curEncoder->m_seiReconPictureDigest.m_digest, 16); p += sprintf(buf + p, " [MD5:%s]", digestStr); } else if (m_param->decodedPictureHashSEI == 2) { digestStr = digestToString(curEncoder->m_seiReconPictureDigest.m_digest, 2); p += sprintf(buf + p, " [CRC:%s]", digestStr); } else if (m_param->decodedPictureHashSEI == 3) { digestStr = digestToString(curEncoder->m_seiReconPictureDigest.m_digest, 4); p += sprintf(buf + p, " [Checksum:%s]", digestStr); } } x265_log(m_param, X265_LOG_DEBUG, "%s\n", buf); } if (m_param->logLevel >= X265_LOG_FRAME && m_csvfpt) { // per frame CSV logging if the file handle is valid fprintf(m_csvfpt, "%d, %c-SLICE, %4d, %2.2lf, %10d,", m_outputCount++, c, poc, curEncData.m_avgQpAq, (int)bits); if (m_param->rc.rateControlMode == X265_RC_CRF) fprintf(m_csvfpt, "%.3lf,", curEncData.m_rateFactor); double psnr = (psnrY * 6 + psnrU + psnrV) / 8; if (m_param->bEnablePsnr) fprintf(m_csvfpt, "%.3lf, %.3lf, %.3lf, %.3lf,", psnrY, psnrU, psnrV, psnr); else fputs(" -, -, -, -,", m_csvfpt); if (m_param->bEnableSsim) fprintf(m_csvfpt, " %.6f, %6.3f", ssim, x265_ssim2dB(ssim)); else fputs(" -, -", m_csvfpt); if (slice->isIntra()) fputs(", -, -", m_csvfpt); else { int numLists = slice->isInterP() ? 1 : 2; for (int list = 0; list < numLists; list++) { fprintf(m_csvfpt, ", "); for (int ref = 0; ref < slice->m_numRefIdx[list]; ref++) { int k = slice->m_refPOCList[list][ref] - slice->m_lastIDR; fprintf(m_csvfpt, " %d", k); } } if (numLists == 1) fputs(", -", m_csvfpt); }#define ELAPSED_MSEC(start, end) (((double)(end) - (start)) / 1000) // detailed frame statistics fprintf(m_csvfpt, ", %.1lf, %.1lf, %.1lf, %.1lf, %.1lf, %.1lf", ELAPSED_MSEC(0, curEncoder->m_slicetypeWaitTime), ELAPSED_MSEC(curEncoder->m_startCompressTime, curEncoder->m_row0WaitTime), ELAPSED_MSEC(curEncoder->m_row0WaitTime, curEncoder->m_endCompressTime), ELAPSED_MSEC(curEncoder->m_row0WaitTime, curEncoder->m_allRowsAvailableTime), ELAPSED_MSEC(0, curEncoder->m_totalWorkerElapsedTime), ELAPSED_MSEC(0, curEncoder->m_totalNoWorkerTime)); if (curEncoder->m_totalActiveWorkerCount) fprintf(m_csvfpt, ", %.3lf", (double)curEncoder->m_totalActiveWorkerCount / curEncoder->m_activeWorkerCountSamples); else fputs(", 1", m_csvfpt); fprintf(m_csvfpt, ", %d", curEncoder->m_countRowBlocks); fprintf(m_csvfpt, "\n"); fflush(stderr); }}#if defined(_MSC_VER)#pragma warning(disable: 4800) // forcing int to bool#pragma warning(disable: 4127) // conditional expression is constant#endifvoid Encoder::getStreamHeaders(NALList& list, Entropy& sbacCoder, Bitstream& bs){ sbacCoder.setBitstream(&bs); /* headers for start of bitstream */ bs.resetBits(); sbacCoder.codeVPS(m_vps); bs.writeByteAlignment(); list.serialize(NAL_UNIT_VPS, bs); bs.resetBits(); sbacCoder.codeSPS(m_sps, m_scalingList, m_vps.ptl); bs.writeByteAlignment(); list.serialize(NAL_UNIT_SPS, bs); bs.resetBits(); sbacCoder.codePPS(m_pps); bs.writeByteAlignment(); list.serialize(NAL_UNIT_PPS, bs); if (m_param->masteringDisplayColorVolume) { SEIMasteringDisplayColorVolume mdsei; if (mdsei.parse(m_param->masteringDisplayColorVolume)) { bs.resetBits(); mdsei.write(bs, m_sps); bs.writeByteAlignment(); list.serialize(NAL_UNIT_PREFIX_SEI, bs); } else x265_log(m_param, X265_LOG_WARNING, "unable to parse mastering display color volume info\n"); } if (m_param->contentLightLevelInfo) { SEIContentLightLevel cllsei; if (cllsei.parse(m_param->contentLightLevelInfo)) { bs.resetBits(); cllsei.write(bs, m_sps); bs.writeByteAlignment(); list.serialize(NAL_UNIT_PREFIX_SEI, bs); } else x265_log(m_param, X265_LOG_WARNING, "unable to parse content light level info\n"); } if (m_param->bEmitInfoSEI) { char *opts = x265_param2string(m_param); if (opts) { char *buffer = X265_MALLOC(char, strlen(opts) + strlen(x265_version_str) + strlen(x265_build_info_str) + 200); if (buffer) { sprintf(buffer, "x265 (build %d) - %s:%s - H.265/HEVC codec - " "Copyright 2013-2015 (c) Multicoreware Inc - " "http://x265.org - options: %s", X265_BUILD, x265_version_str, x265_build_info_str, opts); bs.resetBits(); SEIuserDataUnregistered idsei; idsei.m_userData = (uint8_t*)buffer; idsei.m_userDataLength = (uint32_t)strlen(buffer); idsei.write(bs, m_sps); bs.writeByteAlignment(); list.serialize(NAL_UNIT_PREFIX_SEI, bs); X265_FREE(buffer); } X265_FREE(opts); } } if (m_param->bEmitHRDSEI || !!m_param->interlaceMode)//?????? { /* Picture Timing and Buffering Period SEI require the SPS to be "activated" */ SEIActiveParameterSets sei; sei.m_selfContainedCvsFlag = true; sei.m_noParamSetUpdateFlag = true; bs.resetBits(); sei.write(bs, m_sps); bs.writeByteAlignment(); list.serialize(NAL_UNIT_PREFIX_SEI, bs); }}void Encoder::initVPS(VPS *vps){ /* Note that much of the VPS is initialized by determineLevel() */ vps->ptl.progressiveSourceFlag = !m_param->interlaceMode; vps->ptl.interlacedSourceFlag = !!m_param->interlaceMode; vps->ptl.nonPackedConstraintFlag = false; vps->ptl.frameOnlyConstraintFlag = !m_param->interlaceMode;}void Encoder::initSPS(SPS *sps){ sps->conformanceWindow = m_conformanceWindow; sps->chromaFormatIdc = m_param->internalCsp; sps->picWidthInLumaSamples = m_param->sourceWidth; sps->picHeightInLumaSamples = m_param->sourceHeight; sps->numCuInWidth = (m_param->sourceWidth + g_maxCUSize - 1) / g_maxCUSize; sps->numCuInHeight = (m_param->sourceHeight + g_maxCUSize - 1) / g_maxCUSize; sps->numCUsInFrame = sps->numCuInWidth * sps->numCuInHeight; sps->numPartitions = NUM_4x4_PARTITIONS; sps->numPartInCUSize = 1 << g_unitSizeDepth; sps->log2MinCodingBlockSize = g_maxLog2CUSize - g_maxCUDepth; sps->log2DiffMaxMinCodingBlockSize = g_maxCUDepth; uint32_t maxLog2TUSize = (uint32_t)g_log2Size[m_param->maxTUSize]; sps->quadtreeTULog2MaxSize = X265_MIN(g_maxLog2CUSize, maxLog2TUSize); sps->quadtreeTULog2MinSize = 2; sps->quadtreeTUMaxDepthInter = m_param->tuQTMaxInterDepth; sps->quadtreeTUMaxDepthIntra = m_param->tuQTMaxIntraDepth; sps->bUseSAO = m_param->bEnableSAO; sps->bUseAMP = m_param->bEnableAMP; sps->maxAMPDepth = m_param->bEnableAMP ? g_maxCUDepth : 0; sps->maxTempSubLayers = m_param->bEnableTemporalSubLayers ? 2 : 1; sps->maxDecPicBuffering = m_vps.maxDecPicBuffering; sps->numReorderPics = m_vps.numReorderPics; sps->maxLatencyIncrease = m_vps.maxLatencyIncrease = m_param->bframes; sps->bUseStrongIntraSmoothing = m_param->bEnableStrongIntraSmoothing; sps->bTemporalMVPEnabled = m_param->bEnableTemporalMvp; VUI& vui = sps->vuiParameters; vui.aspectRatioInfoPresentFlag = !!m_param->vui.aspectRatioIdc; vui.aspectRatioIdc = m_param->vui.aspectRatioIdc; vui.sarWidth = m_param->vui.sarWidth; vui.sarHeight = m_param->vui.sarHeight; vui.overscanInfoPresentFlag = m_param->vui.bEnableOverscanInfoPresentFlag; vui.overscanAppropriateFlag = m_param->vui.bEnableOverscanAppropriateFlag; vui.videoSignalTypePresentFlag = m_param->vui.bEnableVideoSignalTypePresentFlag; vui.videoFormat = m_param->vui.videoFormat; vui.videoFullRangeFlag = m_param->vui.bEnableVideoFullRangeFlag; vui.colourDescriptionPresentFlag = m_param->vui.bEnableColorDescriptionPresentFlag; vui.colourPrimaries = m_param->vui.colorPrimaries; vui.transferCharacteristics = m_param->vui.transferCharacteristics; vui.matrixCoefficients = m_param->vui.matrixCoeffs; vui.chromaLocInfoPresentFlag = m_param->vui.bEnableChromaLocInfoPresentFlag; vui.chromaSampleLocTypeTopField = m_param->vui.chromaSampleLocTypeTopField; vui.chromaSampleLocTypeBottomField = m_param->vui.chromaSampleLocTypeBottomField; vui.defaultDisplayWindow.bEnabled = m_param->vui.bEnableDefaultDisplayWindowFlag; vui.defaultDisplayWindow.rightOffset = m_param->vui.defDispWinRightOffset; vui.defaultDisplayWindow.topOffset = m_param->vui.defDispWinTopOffset; vui.defaultDisplayWindow.bottomOffset = m_param->vui.defDispWinBottomOffset; vui.defaultDisplayWindow.leftOffset = m_param->vui.defDispWinLeftOffset; vui.frameFieldInfoPresentFlag = !!m_param->interlaceMode; vui.fieldSeqFlag = !!m_param->interlaceMode; vui.hrdParametersPresentFlag = m_param->bEmitHRDSEI; vui.timingInfo.numUnitsInTick = m_param->fpsDenom; vui.timingInfo.timeScale = m_param->fpsNum;}void Encoder::initPPS(PPS *pps){ bool bIsVbv = m_param->rc.vbvBufferSize > 0 && m_param->rc.vbvMaxBitrate > 0; if (!m_param->bLossless && (m_param->rc.aqMode || bIsVbv)) { pps->bUseDQP = true; pps->maxCuDQPDepth = g_log2Size[m_param->maxCUSize] - g_log2Size[m_param->rc.qgSize]; X265_CHECK(pps->maxCuDQPDepth <= 2, "max CU DQP depth cannot be greater than 2\n"); } else { pps->bUseDQP = false; pps->maxCuDQPDepth = 0; } pps->chromaQpOffset[0] = m_param->cbQpOffset; pps->chromaQpOffset[1] = m_param->crQpOffset; pps->bConstrainedIntraPred = m_param->bEnableConstrainedIntra; pps->bUseWeightPred = m_param->bEnableWeightedPred; pps->bUseWeightedBiPred = m_param->bEnableWeightedBiPred; pps->bTransquantBypassEnabled = m_param->bCULossless || m_param->bLossless; pps->bTransformSkipEnabled = m_param->bEnableTransformSkip; pps->bSignHideEnabled = m_param->bEnableSignHiding; pps->bDeblockingFilterControlPresent = !m_param->bEnableLoopFilter || m_param->deblockingFilterBetaOffset || m_param->deblockingFilterTCOffset; pps->bPicDisableDeblockingFilter = !m_param->bEnableLoopFilter; pps->deblockingFilterBetaOffsetDiv2 = m_param->deblockingFilterBetaOffset; pps->deblockingFilterTcOffsetDiv2 = m_param->deblockingFilterTCOffset; pps->bEntropyCodingSyncEnabled = m_param->bEnableWavefront;}void Encoder::configure(x265_param *p){ this->m_param = p; if (p->keyframeMax < 0) { /* A negative max GOP size indicates the user wants only one I frame at * the start of the stream. Set an infinite GOP distance and disable * adaptive I frame placement */ p->keyframeMax = INT_MAX; p->scenecutThreshold = 0; } else if (p->keyframeMax <= 1) { // disable lookahead for all-intra encodes p->bFrameAdaptive = 0; p->bframes = 0; } if (!p->keyframeMin) { double fps = (double)p->fpsNum / p->fpsDenom; p->keyframeMin = X265_MIN((int)fps, p->keyframeMax / 10); } p->keyframeMin = X265_MAX(1, X265_MIN(p->keyframeMin, p->keyframeMax / 2 + 1)); if (!p->bframes) p->bBPyramid = 0; if (!p->rdoqLevel) p->psyRdoq = 0; /* Disable features which are not supported by the current RD level */ if (p->rdLevel < 3) { if (p->bCULossless) /* impossible */ x265_log(p, X265_LOG_WARNING, "--cu-lossless disabled, requires --rdlevel 3 or higher\n"); if (p->bEnableTransformSkip) /* impossible */ x265_log(p, X265_LOG_WARNING, "--tskip disabled, requires --rdlevel 3 or higher\n"); p->bCULossless = p->bEnableTransformSkip = 0; } if (p->rdLevel < 2) { if (p->bDistributeModeAnalysis) /* not useful */ x265_log(p, X265_LOG_WARNING, "--pmode disabled, requires --rdlevel 2 or higher\n"); p->bDistributeModeAnalysis = 0; p->psyRd = 0; /* impossible */ if (p->bEnableRectInter) /* broken, not very useful */ x265_log(p, X265_LOG_WARNING, "--rect disabled, requires --rdlevel 2 or higher\n"); p->bEnableRectInter = 0; } if (!p->bEnableRectInter) /* not useful */ p->bEnableAMP = false; /* In 444, chroma gets twice as much resolution, so halve quality when psy-rd is enabled */ if (p->internalCsp == X265_CSP_I444 && p->psyRd) { p->cbQpOffset += 6; p->crQpOffset += 6; } if (p->bLossless) { p->rc.rateControlMode = X265_RC_CQP; p->rc.qp = 4; // An oddity, QP=4 is more lossless than QP=0 and gives better lambdas p->bEnableSsim = 0; p->bEnablePsnr = 0; } if (p->rc.rateControlMode == X265_RC_CQP) { p->rc.aqMode = X265_AQ_NONE; p->rc.bitrate = 0; p->rc.cuTree = 0; p->rc.aqStrength = 0; } if (p->rc.aqMode == 0 && p->rc.cuTree) { p->rc.aqMode = X265_AQ_VARIANCE; p->rc.aqStrength = 0.0; } if (p->lookaheadDepth == 0 && p->rc.cuTree && !p->rc.bStatRead) { x265_log(p, X265_LOG_WARNING, "cuTree disabled, requires lookahead to be enabled\n"); p->rc.cuTree = 0; } if (p->maxTUSize > p->maxCUSize) { x265_log(p, X265_LOG_WARNING, "Max TU size should be less than or equal to max CU size, setting max TU size = %d\n", p->maxCUSize); p->maxTUSize = p->maxCUSize; } if (p->rc.aqStrength == 0 && p->rc.cuTree == 0) p->rc.aqMode = X265_AQ_NONE; if (p->rc.aqMode == X265_AQ_NONE && p->rc.cuTree == 0) p->rc.aqStrength = 0; if (p->totalFrames && p->totalFrames <= 2 * ((float)p->fpsNum) / p->fpsDenom && p->rc.bStrictCbr) p->lookaheadDepth = p->totalFrames; if (p->scalingLists && p->internalCsp == X265_CSP_I444) { x265_log(p, X265_LOG_WARNING, "Scaling lists are not yet supported for 4:4:4 color space\n"); p->scalingLists = 0; } if (p->interlaceMode) x265_log(p, X265_LOG_WARNING, "Support for interlaced video is experimental\n"); if (p->rc.rfConstantMin > p->rc.rfConstant) { x265_log(m_param, X265_LOG_WARNING, "CRF min must be less than CRF\n"); p->rc.rfConstantMin = 0; } if (p->analysisMode && (p->bDistributeModeAnalysis || p->bDistributeMotionEstimation)) { x265_log(p, X265_LOG_ERROR, "Analysis load/save options incompatible with pmode/pme"); p->bDistributeMotionEstimation = p->bDistributeModeAnalysis = 0; } if (p->bEnableTemporalSubLayers && !p->bframes) { x265_log(p, X265_LOG_WARNING, "B frames not enabled, temporal sublayer disabled\n"); p->bEnableTemporalSubLayers = 0; } m_bframeDelay = p->bframes ? (p->bBPyramid ? 2 : 1) : 0;//延迟帧数 p->bFrameBias = X265_MIN(X265_MAX(-90, p->bFrameBias), 100); if (p->logLevel < X265_LOG_INFO) { /* don't measure these metrics if they will not be reported */ p->bEnablePsnr = 0; p->bEnableSsim = 0; } /* Warn users trying to measure PSNR/SSIM with psy opts on. */ if (p->bEnablePsnr || p->bEnableSsim) { const char *s = NULL; if (p->psyRd || p->psyRdoq) { s = p->bEnablePsnr ? "psnr" : "ssim"; x265_log(p, X265_LOG_WARNING, "--%s used with psy on: results will be invalid!\n", s); } else if (!p->rc.aqMode && p->bEnableSsim) { x265_log(p, X265_LOG_WARNING, "--ssim used with AQ off: results will be invalid!\n"); s = "ssim"; } else if (p->rc.aqStrength > 0 && p->bEnablePsnr) { x265_log(p, X265_LOG_WARNING, "--psnr used with AQ on: results will be invalid!\n"); s = "psnr"; } if (s) x265_log(p, X265_LOG_WARNING, "--tune %s should be used if attempting to benchmark %s!\n", s, s); } /* some options make no sense if others are disabled */ p->bSaoNonDeblocked &= p->bEnableSAO; p->bEnableTSkipFast &= p->bEnableTransformSkip; /* initialize the conformance window */ m_conformanceWindow.bEnabled = false; m_conformanceWindow.rightOffset = 0; m_conformanceWindow.topOffset = 0; m_conformanceWindow.bottomOffset = 0; m_conformanceWindow.leftOffset = 0; /* set pad size if width is not multiple of the minimum CU size */ if (p->sourceWidth & (p->minCUSize - 1)) { uint32_t rem = p->sourceWidth & (p->minCUSize - 1); uint32_t padsize = p->minCUSize - rem; p->sourceWidth += padsize; m_conformanceWindow.bEnabled = true; m_conformanceWindow.rightOffset = padsize; } /* set pad size if height is not multiple of the minimum CU size */ if (p->sourceHeight & (p->minCUSize - 1)) { uint32_t rem = p->sourceHeight & (p->minCUSize - 1); uint32_t padsize = p->minCUSize - rem; p->sourceHeight += padsize; m_conformanceWindow.bEnabled = true; m_conformanceWindow.bottomOffset = padsize; } if (p->bDistributeModeAnalysis && p->analysisMode) { p->analysisMode = X265_ANALYSIS_OFF; x265_log(p, X265_LOG_WARNING, "Analysis save and load mode not supported for distributed mode analysis\n"); } bool bIsVbv = m_param->rc.vbvBufferSize > 0 && m_param->rc.vbvMaxBitrate > 0; if (!m_param->bLossless && (m_param->rc.aqMode || bIsVbv)) { if (p->rc.qgSize < X265_MAX(16, p->minCUSize)) { p->rc.qgSize = X265_MAX(16, p->minCUSize); x265_log(p, X265_LOG_WARNING, "QGSize should be greater than or equal to 16 and minCUSize, setting QGSize = %d\n", p->rc.qgSize); } if (p->rc.qgSize > p->maxCUSize) { p->rc.qgSize = p->maxCUSize; x265_log(p, X265_LOG_WARNING, "QGSize should be less than or equal to maxCUSize, setting QGSize = %d\n", p->rc.qgSize); } } else m_param->rc.qgSize = p->maxCUSize;}void Encoder::allocAnalysis(x265_analysis_data* analysis){ analysis->interData = analysis->intraData = NULL; if (analysis->sliceType == X265_TYPE_IDR || analysis->sliceType == X265_TYPE_I) { analysis_intra_data *intraData = (analysis_intra_data*)analysis->intraData; CHECKED_MALLOC_ZERO(intraData, analysis_intra_data, 1); CHECKED_MALLOC(intraData->depth, uint8_t, analysis->numPartitions * analysis->numCUsInFrame); CHECKED_MALLOC(intraData->modes, uint8_t, analysis->numPartitions * analysis->numCUsInFrame); CHECKED_MALLOC(intraData->partSizes, char, analysis->numPartitions * analysis->numCUsInFrame); CHECKED_MALLOC(intraData->chromaModes, uint8_t, analysis->numPartitions * analysis->numCUsInFrame); analysis->intraData = intraData; } else { analysis_inter_data *interData = (analysis_inter_data*)analysis->interData; CHECKED_MALLOC_ZERO(interData, analysis_inter_data, 1); CHECKED_MALLOC_ZERO(interData->ref, int32_t, analysis->numCUsInFrame * X265_MAX_PRED_MODE_PER_CTU * 2); CHECKED_MALLOC(interData->depth, uint8_t, analysis->numPartitions * analysis->numCUsInFrame); CHECKED_MALLOC(interData->modes, uint8_t, analysis->numPartitions * analysis->numCUsInFrame); CHECKED_MALLOC_ZERO(interData->bestMergeCand, uint32_t, analysis->numCUsInFrame * CUGeom::MAX_GEOMS); analysis->interData = interData; } return;fail: freeAnalysis(analysis); m_aborted = true;}void Encoder::freeAnalysis(x265_analysis_data* analysis){ if (analysis->intraData) { X265_FREE(((analysis_intra_data*)analysis->intraData)->depth); X265_FREE(((analysis_intra_data*)analysis->intraData)->modes); X265_FREE(((analysis_intra_data*)analysis->intraData)->partSizes); X265_FREE(((analysis_intra_data*)analysis->intraData)->chromaModes); X265_FREE(analysis->intraData); } else { X265_FREE(((analysis_inter_data*)analysis->interData)->ref); X265_FREE(((analysis_inter_data*)analysis->interData)->depth); X265_FREE(((analysis_inter_data*)analysis->interData)->modes); X265_FREE(((analysis_inter_data*)analysis->interData)->bestMergeCand); X265_FREE(analysis->interData); }}void Encoder::readAnalysisFile(x265_analysis_data* analysis, int curPoc){#define X265_FREAD(val, size, readSize, fileOffset)\ if (fread(val, size, readSize, fileOffset) != readSize)\ {\ x265_log(NULL, X265_LOG_ERROR, "Error reading analysis data\n");\ freeAnalysis(analysis);\ m_aborted = true;\ return;\ }\ static uint64_t consumedBytes = 0; static uint64_t totalConsumedBytes = 0; fseeko(m_analysisFile, totalConsumedBytes, SEEK_SET); int poc; uint32_t frameRecordSize; X265_FREAD(&frameRecordSize, sizeof(uint32_t), 1, m_analysisFile); X265_FREAD(&poc, sizeof(int), 1, m_analysisFile); uint64_t currentOffset = totalConsumedBytes; /* Seeking to the right frame Record */ while (poc != curPoc && !feof(m_analysisFile)) { currentOffset += frameRecordSize; fseeko(m_analysisFile, currentOffset, SEEK_SET); X265_FREAD(&frameRecordSize, sizeof(uint32_t), 1, m_analysisFile); X265_FREAD(&poc, sizeof(int), 1, m_analysisFile); } if (poc != curPoc || feof(m_analysisFile)) { x265_log(NULL, X265_LOG_WARNING, "Error reading analysis data: Cannot find POC %d\n", curPoc); freeAnalysis(analysis); return; } /* Now arrived at the right frame, read the record */ analysis->poc = poc; analysis->frameRecordSize = frameRecordSize; X265_FREAD(&analysis->sliceType, sizeof(int), 1, m_analysisFile); X265_FREAD(&analysis->numCUsInFrame, sizeof(int), 1, m_analysisFile); X265_FREAD(&analysis->numPartitions, sizeof(int), 1, m_analysisFile); /* Memory is allocated for inter and intra analysis data based on the slicetype */ allocAnalysis(analysis); if (analysis->sliceType == X265_TYPE_IDR || analysis->sliceType == X265_TYPE_I) { X265_FREAD(((analysis_intra_data *)analysis->intraData)->depth, sizeof(uint8_t), analysis->numCUsInFrame * analysis->numPartitions, m_analysisFile); X265_FREAD(((analysis_intra_data *)analysis->intraData)->modes, sizeof(uint8_t), analysis->numCUsInFrame * analysis->numPartitions, m_analysisFile); X265_FREAD(((analysis_intra_data *)analysis->intraData)->partSizes, sizeof(char), analysis->numCUsInFrame * analysis->numPartitions, m_analysisFile); X265_FREAD(((analysis_intra_data *)analysis->intraData)->chromaModes, sizeof(uint8_t), analysis->numCUsInFrame * analysis->numPartitions, m_analysisFile); analysis->sliceType = X265_TYPE_I; consumedBytes += frameRecordSize; } else if (analysis->sliceType == X265_TYPE_P) { X265_FREAD(((analysis_inter_data *)analysis->interData)->ref, sizeof(int32_t), analysis->numCUsInFrame * X265_MAX_PRED_MODE_PER_CTU, m_analysisFile); X265_FREAD(((analysis_inter_data *)analysis->interData)->depth, sizeof(uint8_t), analysis->numCUsInFrame * analysis->numPartitions, m_analysisFile); X265_FREAD(((analysis_inter_data *)analysis->interData)->modes, sizeof(uint8_t), analysis->numCUsInFrame * analysis->numPartitions, m_analysisFile); X265_FREAD(((analysis_inter_data *)analysis->interData)->bestMergeCand, sizeof(uint32_t), analysis->numCUsInFrame * CUGeom::MAX_GEOMS, m_analysisFile); consumedBytes += frameRecordSize; totalConsumedBytes = consumedBytes; } else { X265_FREAD(((analysis_inter_data *)analysis->interData)->ref, sizeof(int32_t), analysis->numCUsInFrame * X265_MAX_PRED_MODE_PER_CTU * 2, m_analysisFile); X265_FREAD(((analysis_inter_data *)analysis->interData)->depth, sizeof(uint8_t), analysis->numCUsInFrame * analysis->numPartitions, m_analysisFile); X265_FREAD(((analysis_inter_data *)analysis->interData)->modes, sizeof(uint8_t), analysis->numCUsInFrame * analysis->numPartitions, m_analysisFile); X265_FREAD(((analysis_inter_data *)analysis->interData)->bestMergeCand, sizeof(uint32_t), analysis->numCUsInFrame * CUGeom::MAX_GEOMS, m_analysisFile); consumedBytes += frameRecordSize; }#undef X265_FREAD}void Encoder::writeAnalysisFile(x265_analysis_data* analysis){#define X265_FWRITE(val, size, writeSize, fileOffset)\ if (fwrite(val, size, writeSize, fileOffset) < writeSize)\ {\ x265_log(NULL, X265_LOG_ERROR, "Error writing analysis data\n");\ freeAnalysis(analysis);\ m_aborted = true;\ return;\ }\ /* calculate frameRecordSize */ analysis->frameRecordSize = sizeof(analysis->frameRecordSize) + sizeof(analysis->poc) + sizeof(analysis->sliceType) + sizeof(analysis->numCUsInFrame) + sizeof(analysis->numPartitions); if (analysis->sliceType == X265_TYPE_IDR || analysis->sliceType == X265_TYPE_I) analysis->frameRecordSize += sizeof(uint8_t) * analysis->numCUsInFrame * analysis->numPartitions * 4; else if (analysis->sliceType == X265_TYPE_P) { analysis->frameRecordSize += sizeof(int32_t) * analysis->numCUsInFrame * X265_MAX_PRED_MODE_PER_CTU; analysis->frameRecordSize += sizeof(uint8_t) * analysis->numCUsInFrame * analysis->numPartitions * 2; analysis->frameRecordSize += sizeof(uint32_t) * analysis->numCUsInFrame * CUGeom::MAX_GEOMS; } else { analysis->frameRecordSize += sizeof(int32_t) * analysis->numCUsInFrame * X265_MAX_PRED_MODE_PER_CTU * 2; analysis->frameRecordSize += sizeof(uint8_t) * analysis->numCUsInFrame * analysis->numPartitions * 2; analysis->frameRecordSize += sizeof(uint32_t) * analysis->numCUsInFrame * CUGeom::MAX_GEOMS; } X265_FWRITE(&analysis->frameRecordSize, sizeof(uint32_t), 1, m_analysisFile); X265_FWRITE(&analysis->poc, sizeof(int), 1, m_analysisFile); X265_FWRITE(&analysis->sliceType, sizeof(int), 1, m_analysisFile); X265_FWRITE(&analysis->numCUsInFrame, sizeof(int), 1, m_analysisFile); X265_FWRITE(&analysis->numPartitions, sizeof(int), 1, m_analysisFile); if (analysis->sliceType == X265_TYPE_IDR || analysis->sliceType == X265_TYPE_I) { X265_FWRITE(((analysis_intra_data*)analysis->intraData)->depth, sizeof(uint8_t), analysis->numCUsInFrame * analysis->numPartitions, m_analysisFile); X265_FWRITE(((analysis_intra_data*)analysis->intraData)->modes, sizeof(uint8_t), analysis->numCUsInFrame * analysis->numPartitions, m_analysisFile); X265_FWRITE(((analysis_intra_data*)analysis->intraData)->partSizes, sizeof(char), analysis->numCUsInFrame * analysis->numPartitions, m_analysisFile); X265_FWRITE(((analysis_intra_data*)analysis->intraData)->chromaModes, sizeof(uint8_t), analysis->numCUsInFrame * analysis->numPartitions, m_analysisFile); } else if (analysis->sliceType == X265_TYPE_P) { X265_FWRITE(((analysis_inter_data*)analysis->interData)->ref, sizeof(int32_t), analysis->numCUsInFrame * X265_MAX_PRED_MODE_PER_CTU, m_analysisFile); X265_FWRITE(((analysis_inter_data*)analysis->interData)->depth, sizeof(uint8_t), analysis->numCUsInFrame * analysis->numPartitions, m_analysisFile); X265_FWRITE(((analysis_inter_data*)analysis->interData)->modes, sizeof(uint8_t), analysis->numCUsInFrame * analysis->numPartitions, m_analysisFile); X265_FWRITE(((analysis_inter_data*)analysis->interData)->bestMergeCand, sizeof(uint32_t), analysis->numCUsInFrame * CUGeom::MAX_GEOMS, m_analysisFile); } else { X265_FWRITE(((analysis_inter_data*)analysis->interData)->ref, sizeof(int32_t), analysis->numCUsInFrame * X265_MAX_PRED_MODE_PER_CTU * 2, m_analysisFile); X265_FWRITE(((analysis_inter_data*)analysis->interData)->depth, sizeof(uint8_t), analysis->numCUsInFrame * analysis->numPartitions, m_analysisFile); X265_FWRITE(((analysis_inter_data*)analysis->interData)->modes, sizeof(uint8_t), analysis->numCUsInFrame * analysis->numPartitions, m_analysisFile); X265_FWRITE(((analysis_inter_data*)analysis->interData)->bestMergeCand, sizeof(uint32_t), analysis->numCUsInFrame * CUGeom::MAX_GEOMS, m_analysisFile); }#undef X265_FWRITE}

 

转载地址:http://pouub.baihongyu.com/

你可能感兴趣的文章
【算法】- 动态规划的编织艺术
查看>>
用 TensorFlow 让你的机器人唱首原创给你听
查看>>
对比学习用 Keras 搭建 CNN RNN 等常用神经网络
查看>>
深度学习的主要应用举例
查看>>
word2vec 模型思想和代码实现
查看>>
怎样做情感分析
查看>>
用深度神经网络处理NER命名实体识别问题
查看>>
用 RNN 训练语言模型生成文本
查看>>
RNN与机器翻译
查看>>
用 Recursive Neural Networks 得到分析树
查看>>
RNN的高级应用
查看>>
TensorFlow-7-TensorBoard Embedding可视化
查看>>
轻松看懂机器学习十大常用算法
查看>>
一个框架解决几乎所有机器学习问题
查看>>
特征工程怎么做
查看>>
机器学习算法应用中常用技巧-1
查看>>
机器学习算法应用中常用技巧-2
查看>>
通过一个kaggle实例学习解决机器学习问题
查看>>
决策树的python实现
查看>>
Sklearn 快速入门
查看>>